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A Multistrip Moment Method Technique and Its
Application to the Post Preblem in a
Circular Waveguide

Xiao-Hui Zhu, Dai-Zong Chen, and Shi-Jin Wang

Abstract —A moment method technique for solving obstacle problems
in a waveguide is presented. Instead of the procedure using a multifila-
ment current representation, which leads to a slowly converging series, a
multistrip representation of the current is proposed. In the procedure,
the true currents on obstacle surfaces are replaced by equivalent planar
currents in a number of waveguide cross sections inside the obstacle.
The technique is applied to a pair of metallic posts in the TE,;-mode
circular waveguide. Numerical results are compared with experimental
data.

I. INTRODUCTION

The moment method (MM) is one of the most efficient
numerical methods and has been widely used for solving such
waveguide problems as discontinuities, junctions, transitions,
excitations, obstacles, and eigenvalue problems [1]-[9]. For the
inductive post in a rectangular waveguide, a two-dimensional
MM solution was developed by Leviatan et al. [5], [6], who
computed the parameters of the equivalent circuit and current
distribution for a post of large diameter. For the probe-excited
rectangular waveguide, a three-dimensional MM solution was
developed by Jarem [7], who gave the input impedance and
surface currents on the probe. These MM solutions used a
multifilament current representation for the post, or probe; we
refer to these as multifilament MM’s. In the multifilament MM
procedure, the true electric currents induced on the obstacle
surfaces are replaced by a number of filamentary currents inside
the obstacles. The boundary condition is then tested on the
obstacle surfaces and a set of linear equations, i.e., a matrix
equation, is derived. A shortcoming of the multifilament MM is
that the value of matrix elements tends to infinity as the
electric-field testing point approaches the filament. If the
Green’s function is expressed as an infinite summation of nor-
mal mode functions which satisfy the boundary condition on the
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Fig. 1. Obstacle and imaginary strips in a waveguide.

waveguide wall, the matrix elements will be led to a slowly
converging series, which is not convenient for computation. In a
rectangular waveguide, fortunately, this series can be converted
to a rapidly converging one by introducing an auxiliary series
[51-{7], or the static Green’s function [2], and the multifilament
MM can then be used successfully for the post and probe
problems. In waveguides having other cross sections, to the
authors’ knowledge, such an auxiliary series is difficult to find.
As a result, the multifilament MM has only a restricted applica-
tion.

In this paper, a multistrip current representation is intro-
duced to develop a moment method technique for obstacle
problems in waveguides of arbitrary section. The true currents
on the obstacle surfaces are replaced by equivalent planar
currents in a number of waveguide cross sections inside the
obstacle, and the unknown planar currents are then expanded.
The matrix equation is obtained by testing the tangential electric
fields along properly chosen matching lines on the obstacle
surfaces. The multistrip MM procedure will be described for-
mally in Section IL

In a circular waveguide, the concentric discontinuities have
been studied by many authors [8], [9]. By contrast, there has
been little study of nonaxisymmetric discontinuities of circular
waveguides, especially those with finite thickness. The multistrip
MM should prove useful in solving such problems. The case of a
pair of posts in a TE;-mode circular waveguide will be analyzed
in Section III.

1I. Basic ForMuULATION

The problem considered is depicted in Fig. 1. An obstacle is
located in a cylindrical waveguide of arbitrary cross section
whose axis is in the z direction. Extending the procedure to a

0018-9480 /91 /1000-1762801.00 ©1991 IEEE
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multiobstacle case is straightforward. The total fields, E and H R
are composed of incident and scattered fields:

o

(1a)
(1b)

The obstacle is assumed to be perfectly conducting, so that the
tangential components of the total electric field must vanish on
the surface, %, while the tangential components of the total
magnetic field are related to the surface current, J =, ie.,

=i i,

AXE=0

T=fxXH

on 2 (2a)

(2b)

where 7 is the outward normal to the surface. In order to find
the scattered field in the waveguide, we replace the perfectly
conducting obstacle surface, %, by an equivalent current distri-
bution, J, on M suitably chosen strips which are perpendicular
to the waveguide axis, inside the obstacle. The current distribu-
tion, J, is composed of a set of equivalent transverse currents,
Jypy m=1,2,+-+, M, carried by strip o,, on the plane z' =1, as
shown in Fig. 1. The scattered field is then expressed by

on X

M

F-Y [

m=1"9%m

G(x,9,21x',y, 2')-T(x', ¥ ) do,,  (3)

where the dyadic Green'’s function, C=},, is defined as the electric
field radiated by a unit transverse current source at (x', y', z') in
the waveguide with the obstacle removed, i.e.,

VXVXG,—k’G,=— jou(#% + §9)8(x — x)8(y = ¥') (4)

where k=2 /A=w(ue)? and A is the free-space wave-
length. By using the Lorentz reciprocity principle, the dyadic
Green’s function can be expressed in terms of waveguide modes
as follows [10]:

z>2z
z<z (5)

= 1 L+ = o Fv,z

G, = _5 ZEI;(x,y,z)ep(x 24 )e 7
p

where the fields for the pth mode propagating (or evanescing)

in the +z direction, ES and H,, and those in the —z

direction, £ and H,, are represented by

Ef=(e,te,2)e™"" (6a)
HE =(2h,+h,,2)e 7. (6b)

In (6), E;, and ﬁp are orthogonal transverse vector functions and
have been normalized in the form
[, xn,-2a4=5,, (7)
A
where A4 is the waveguide cross section and 6, is the Kro-

necker delta. Generally, the sum in (5) includes all TE,, and
TM,,, modes. Substitution of (6) into (5) gives

Gi= 3 X [5(0 ) % eul.9)7]

z>Z

'ep(x,’y,)eﬂ}plz_zl z< "
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The current, J,,, in (3) is expressed in terms of expansion
functions, f,, as follows:

Sm
. roIN D
I.= Y ILf(x,y){, ona,
J=s8, 111
Z, =Ty, m=12---M §,=0
where fj is a unit transverse vector. [, j=1,2,---,5,, is a

constant yet to be determined. On the obstacle surface, 2, a
finite number of matching lines, /, are chosen to test the
boundary conditions (see Fig. 1). For each line, a number of
weighting functions, w;, may be used. That is,

©)
where [ is a unit tangential vector of surface 3 along line /,. As

a result, a system of linear equations, i.e.. a matrix equation, is
obtained:

ZI=v (10)
where
1 B N R z,> 2z
Z”_EZL el lw,(ep+epzz) ldl z,< 7 (1)
p (2
L,,=[ & hdo (12)
Vl=fw,E*'m°-f, dl. (13)
ll

Generally, the number of equations in system (10) is taken to be
equal to the total number of unknowns, and the solution of (10)
is straightforward. Once (10) is solved, the scattered fields from
the obstacle are then obtained as

E‘(x,y,z)=2blj§; +pr_fl; (14a)

p P
ﬁ“(x,y,z)=2b;h7; +pr’ﬁp’ (14b)

p P

where
bf= Y IL, e’ (15a)
Z<z

(15b)

,

- = —vpz;

bp Z IJLP:Je :
7>z

The values of b;‘ and b, vary with z in the range 7, <z <7y,
while b =0 for z <7y, and b, =0 for z> 7).

II1. Posts iN CIRCULAR WAVEGUIDE

The multistrip MM procedure presented here has been used
to analyze a pair of posts in a circular waveguide, as shown in
Fig. 2 [11]. The geometry and coordinate system are illustrated
in Fig. 3. It is assumed that only the TE,; mode, p=1, can
propagate in the waveguide, so that

0.2930 < a /A <0.3827 )]

where a is the waveguide radius. Consider the case of two strips
and a four-term expansion, i.e.,

M=2 Ty=—¢ T,=C¢C si=4 5, =8.
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Fig. 2. A pair of posts in circular waveguide and their equivalent

circuit.

In view of the fact that both the posts and incident electric field
are x-directed, the equivalent currents can be expressed as

—xZIf](x ¥ onoy, z;=—c¢ (18a)
j=1
8
L=%Y Lf(x,y) ono,, z;=c (18b)
j=5
where
[ y)=¢,(x)5(y) (19)
b =Ps=9s=y, Y=g, ==y (20)
G=0=0s=1{6 LH=0=0=0 (21)
Yr(x) =sin ku (22a)
(%) = a(1—cos ku) —sin ku (22b)
3 kh —sin kh cos kh
- (1—cos kh)’
u=x—a+h
1
51()’):‘3 (23a)
T wy 1
Gy)=gpeos 4 (23b)

with A the post length and b the strip width. The constant «
makes ¢, and ¢, orthogonal to one another in the interval
0 <u < h [7). The strips o; and o, must be within the post of
diameter 4; hence

0<c<d/2 24)
0<b<(d?—4c?) (25)

It is convenient to select six generatrix lines equally spaced on

1/2
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waveguide wall
post surface
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matching electric/
1ine wall

N
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Né 5/ / //

Fig. 3. Multistrip current representation.

the post surface as matching lines. Symmetry shows that only
four lines (denoted I, 2, 3, and 4 in Fig. 3) need to be tested.
The ¢,(x) and ,(x) of (22) are used as the weighting functions
for each matching line. From (20) we have

[ =%,

Wl = lpl(x)
Therefore (11)-(13) become

1 g (H()
EZL””e vplz, Zﬂfo Y zpl(x)epx(x,y,)du (26)
r

—2/b:j2f’“”px(x YY) dudy (27
V,= e‘fﬁlzlfoH(y’)wl(x)elx(x, y,) du (28)

where
H(y)=h—a+((/12ﬁyz)1/2 (29)

is the length of matching line or strip in the x direction, and
B,=v, /J is the propagation constant of the dominant mode
TE,,. In the structure considered, only the modes with cos n¢
variations in e,, can be excited and e¢,, in (26)—(28), for the

TE,,, mode, is expressed by

p\ nx
ey =K, Cry (,u’,,q ) 5 cos nd
al Wy,
PY Y
+ 7w = | —si 30
(soe ) 5 ‘“”“’} (30)
where
w ik
K, =
" € V

\/ 7r(1+5,,0) \/,u, —n J(,u,nq)

’n A 2
y. =k (u_) —1.

r 27 a
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For the TM,,, mode,

, p
€px™ an qu[']n(ﬂ’nq_a_)

Fong

n
cos nd>+Jn(,unq£) -)2] sin n¢>}
alp
(1)

where

nq

c / 2 1
" 77(1+5n0) #nq‘,r,t(:u'nq)

2
Fong A
=k [222) -1,
i (27ra)

=

It
st
BN

Here J,(x) is the Bessel function, and K., and g, are the gth
roots of J,(x}=0 and J)(x)=dJ,(x)/dx =0, respectively. In
the summation (26), only the TE,, and TM,, modes with odd
index » are needed because the x = 0 plane is an electric wall.

The reflection and transmission coefficients for the incident
TE,; mode or the scattering-matrix parameters for the equiva-
lent circuit are then obtained as

S11=S8p=>by
Sip=S8y=1+b;

where b, can be derived from (15), in which the observation
points were taken to be far away from the posts,ie., z < 7= —¢
or z > 7, = ¢. This is true even though the reference plane T of
the equivalent circuit in Fig. 2 is taken as the central plane of
z =0 (Fig. 3). It then follows that
4 8
b= ) LL, ¥+ ) IL, e*ie
j=5

(32)

j=1

The parameters of the equivalent circuit can be obtained by [5]

28

Xy = (332)
(1 - Sn) - Su
1+8,-8

X, = — 2 (33b)

b8, 458,

A computer program has been prepared to carry out the
solution procedure. A 32-point Gaussian quadrature is used to
evaluate the integral over the interval 0 <u < H(y), which is
divided into Nx segments:

h n
Nx=1+Int{0.7—¢q +Int(———).
a 13
Similarly, a three-point Gaussian quadrature is used for the
integral over the interval — b /2 <y' <b /2 with Ny segments:

b
Ny=1+Int(n—).
a

In order to test the convergence of the multistrip MM proce-
dure, the summation (26) over different higher order modes is
computed for typical dimensional parameters (0.02 <d /A<
0.1, /a<0.5) in the frequency band of (17). It is found that
TE,;, TE,;, TM,,;, TM,,,, and TM,; make a significant contri-
bution to z, " The contribution of TM,,, with ¢ > 3 is found to
be small, and TE,, with g > 2 can be ignored. The equivalent
circuit parameters are insensitive to the width, b, and location,
¢, of strips except for the values close to the limits of (24) and
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Fig. 4. Equivalent susceptance of posts.

(25). The calculated values of normalized Xa and Xb for
a /A =0.321 and 0.355 were illustrated in [11].

A comparison between numerical results and measured data
given by Ishida et al. [12] for the post normalized susceptance
B(=-1/X,) is shown in Fig. 4.

IV. ConNcLusioN

The multistrip moment method procedure for the analysis of
a metal obstacle in a waveguide is formulated by introducing
equivalent planar currents within the obstacle and matching
lines on the obstacle surface. In this procedure, the matrix
elements are determined by a series involving integrals of mode
functions over the strips and the convergence has been im-
proved. As an example, the technique is applied to a pair of
posts in a circular waveguide. The computed results show good
agreement with the experimental data.
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Numerical Analysis of Waveguide Discontinuity
Problems Using the Network Model
Decomposition Method

Geyl Wen

Abstract —This paper presents an application of the network model
decomposition method to the analysis of arbitrarily shaped H- and
E-plane waveguide junctions. By using the polygon discretization tech-
nique introduced in [1], the waveguide discontinuity region, which is
surrounded by a metallic wall and the reference planes chosen, is first
discretized; then the topological model and the corresponding network
model for the waveguide discontinuity are established. In the formula-
tion, equivalent current sources connected to the nodes on the boundary
of the region have been introduced to replace the effect of the field
external to the region. The field internal to the region is approximated
by the nodal voltage distribution of the network model, which can then
be used to determine the scattering parameters of the waveguide junc-
tion. A diakoptic algorithm for the solution of the network model has
also been developed. To illustrate the applications and show the validity
of the method, numerical results for various H- and E-plane junctions
have been given and a favorable comparison has been made with other
existing theories.

I. INTRODUCTION

In an earlier paper, a method termed network model decom-
position (NMD) was presented for the solution of transmission
line problems. The object of the present paper is to describe the
application of the NMD method to the analysis of scattering by
H- or E-plane waveguide junctions. A topological model for the
waveguide discontinuityis first established by dividing the dis-
continuity region into polygonal subregions; the corresponding
network model is then formulated on the basis of the topological
model and the field equations. In the formulation, the field
internal to the waveguide discontinuity region is discretized and
represented by a nodal voltage distribution. The field external to
the region is replaced by equivalent current sources connected
to the boundary nodes, without affecting the field distribution
inside the region. A diakoptic algorithm is also developed for
the solution of the network models, by means of which the
computational efforts and computer core storage can be greatly
reduced.

To show the validity and usefulness of the network model
decomposition method, computed results are given for various
H- and E-plane waveguide discontinuities. In all cases studied,
the poswer conservation condition is satisfied to an accuracy of
+107°.
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II. ToroLOGICAL MODELS AND NETWORK MODELS

An arbitrarily shaped n-port waveguide junction is shown in
Fig. 1(a), where the reference planes T, (p=1,2,-- -,n) and the
metallic wall T, completely enclose the waveguide discontinuity
region (); d, is the width, a,, or the height, b, of the wave-
guide p for the H- or E-plane junction. The waveguide p is
assumed to be filled with dielectric of relative permittivity €,,,.

If the excitation by the dominant TE; mode is assumed, then
the waveguide discontinuity can be described by the following
equations [9]:

Vi +K2p=0 (1)
K2 =KZ2é, (2)
K§=wuye 3)
) €, {for H-plane junction)
' €, — ('n'/Koa)z (for E-plane junction)
E, (for H-plane junction)
= {Hz (for E-plane junction) ©)

where E, and H._ are the z components of electric and mag-
netic field respectively.

Following the procedure described in [1], the waveguide dis-
continuity region is first discretized by using polygon discretiza-
tion techniques (Fig. 1(b)). Then the topological model for the
waveguide discontinuity problem can be established (Fig. 1(c)).
The set of all the oriented branches and the incidence matrix of
the topological model will be denoted by S, ={b;,b,, " ,b,}
and A ={a, } respectively. Then we have the equivalent form of
Kirchhoff’s voltage laws as follows:

U,= ATV (6)

where V=_(¢,,9,,"* ', o5)" is the node-to-datum voltage vector;
¢, is the value of ¢ at node n, (k=1,2,---,N); and U, is the
branch voltage vector.

Making use of the approximation introduced in [1], the node
equation for an interior node #; can be expressed in terms of
the incidence matrix A as
b

Z Al =0
I=1

€k
Z akl,Yk,”lL =
=1

(M
where u; is the branch voltage, i,, the branch current and Y,
the branch admittances:

YV, =—K S,

Yk, = (plflqt+qtpl)/ mony

- We now construct the node equation for a boundary node.
The dual clement G, of a boundary node #n, is shown in [1,
fig. 2(b)]. The following relation can then be derived in a similar
way:

(3)

e —1 9
@
—dT
1=2 pt*lqulan
do N
o Zars ﬁdr+K2ff ¢ ds
ap, R Dep—14., 01 G
(4
[ ——dr+ [ _——ar-o (9)
nrdy on ngde, n
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