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A Multistrip Moment Method Technique and Its

Application to the Post Problem in a

Circular Waveguide

Xiao-Hui Zhu, Dai-Zong Chen, and Shi-Jin Wang

Abstract —A moment method technique for solving obstacle problems
in a waveguide is presented, Instead of the procedure using a multifila-
ment current representation, which leads to a slowly converging series, a
multistrip representation of the current is proposed. In the procedure,

the true currents on obstacle surfaces are replaced by equivalent planar

currents in a number of waveguide cross sections inside the obstacle.
The technique is applied to a pair of metallic posts in the TE1l-mode

circular waveguide. Numerical results are compared with experimental

data.

I. INTRODUCTION

The moment method (MM) is one of the most efficient

numerical methods and has been widely used for solving such

waveguide problems as discontinuities, junctions, transitions,

excitations, obstacles, and eigenvalue problems [1]–[9]. For the

inductive post in a rectangular waveguide, a two-dimensional

MM solution was developed by Leviatan et al. [5], [61, who

computed the parameters of the equivalent circuit and current

distribution for a post of large diameter. For the probe-excited

rectangular waveguide, a three-dimensional MM solution was

developed by Jarem [7], who gave the input impedance and

surface currents on the probe. These MM solutions used a

multifilament current representation for the post, or probe; we

refer to these as multifilament MM’s. In the multifilament MM

procedure, the true electric currents induced on the obstacle

surfaces are replaced by a number of filamentary currents inside

the obstacles. The boundary condition is then tested on the

obstacle surfaces and a set of linear equations, i.e., a matrix

equation, is derived. A shortcoming of the multifilament MM is

that the value of matrix elements tends to infinity as the

electric-field testing point approaches the filament, If the

Green’s function is expressed as an infinite summation of nor-

mal mode functions which satisfy the boundary condition on the
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Fig. 1. Obstacle and imaginary strips in a waveguide.

waveguide wall, the matrix elements will be led to a slowly

converging series, which is not convenient for computation. In a

rectangular waveguide, fortunately, this series can be converted

to a rapidly converging one by introducing an auxiliary series

[5]-{7], or the static Green’s function [2], and the multifilament

MM can then be used successfully for the post and probe

problems. In waveguides having other cross sections, to the

authors’ knowledge, such an auxiliary series is difficult to find.

As a result, the multifilament MM has only a restricted applica-

tion.

In this paper, a multistrip current representation is intro-

duced to develop a moment method technique for obstacle

problems in waveguides of arbitra~ section, The true currents

on the obstacle surfaces are replaced by equivalent planar

currents in a number of waveguide cross sections inside the

obstacle, and the unknown planar currents are then expanded.

The matrix equation is obtained by testing the tangential electric

fields along properly chosen matching lines on the obstacle

surfaces. The multistrip MM procedure will be described for-

mally in Section II.

In a circular waveguide, the concentric discontinuities have

been studied by many authors [8], [9]. By contrast, there has

been little study of nonaxisymmetric discontinuities of circular

waveguides, especially those with finite thickness. The multistrip

MM should prove useful in solving such problems. The case of a

pair of posts in a TE1l-mode circular waveguide will be analyzed

in Section III.

II. BASIC FORMULATION

The problem considered is depicted in Fig. 1. An obstacle is

located in a cylindrical waveguide of arbitrary cross section

whose axis is in the z direction. Extending the procedure to a
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multiobstacle case is straightforward. The total fields, ~ and ~,

are composed of incident and scattered fields:

g=++~
(la)

~=~m.+~s,
(lb)

The obstacle is assumed to be perfectly conducting, so that the

tangential components of the total electric field must vanish on

the surface, 2, while the tangential components_of the total

magnetic field are related to the surface current, Jx, i.e.,

AXE=O on X (2a)

7“=ilxz on Z (2b)

where h is the outward normal to the surface. In order to find

the scattered field in the waveguide, we replace the perfectly

conducti~g obstacle surface, Z, by an equivalent current distri-

bution, J, on M suitably chosen strips which are perpendicular

to the_waveguide axis, inside the obstacle. The current distribu-

tion, J, is composed of a set of equivalent transverse currents,

~,m=l,2,” , M, carried by strip Uw on the plane z’ =

shown in Fig. 1. The scattered field is then expressed by
Tm , as

(3)

where the dyadic Green’s function, ~r, is defined as the electric

field radiated by a unit transverse current source at (x’, y’, z’ ) in

the waveguide with the obstacle removed, i.e.,

VXVX~, -k2~, = - jop(ti+ jj)8(x-x’)8(y - y’) (4)

where k = 27r /h = ti(I-Le)l/2, and A is the free-space wave-

length. By using the Lorentz reciprocity principle, the dyadic

Green’s function can be expressed in terms of waveguide modes

as follows [10]:

where the fields for the pth mode propagating (or evanescing)

in the + z_ direction, ~~ and ~~, and those in the – z

direction, E; and H;, are represented by

‘%‘(~piepzi)e’vp’ (6a)

In (6), ~P and ~p are orthogonal transverse vector functions and

have been normalized in the form

(7)

where A is the waveguide cross section and 8PPt is the Kro-

necker delta. Gene~ally, the sum in (5) includes all TE.Q and

TM.q modes, Substitution of (6) into (5) gives

The current, ~~, in (3) is expressed in terms of expansion

functions, ~, as follows:

z; .= ~m m=l,2, . . ..M So=o

where ~ is a unit transverse vector. 1,, j = 1,2,. ... s~, is a

constant yet to be determined. On the obstacle surface, 2, a

finite number of matching lines, 1,, are chosen to test the

boundary conditions (see Fig, 1). For each line, a number of

weighting functions, Wi, may be used. That is,

Jw,~.~dl=O, i=l,2,. ... K (9)
1,

where ~ is a unit tangential vector of surface X along line 1,. As

a result, a system of linear equations, i.e., a matrix equation, is

obtained:

ZI=V (10)

where

~ ‘/WLE’’nc+ dl. (13)
1’

Generally, the number of equations in system (10) is taken to be

equal to the totad number of unknowns, and the solution of (10)

is straightforward. Once (10) is solved, the scattered fields from

the obstacle are then obtained as

ii’(X, y,Z) = ~b;H: + ~bp-ii; (14b)

P P

where

(15b)

The values of b~- and bp– vary with z in the range rl < z < TM,

while bp+ = O for z < rl, and bp- = O for z > TM.

III. POSTS IN CIRCULAR WAVEGUIDE

The multistrip MM procedure presented here has been used

to analyze a pair of posts in a circular waveguide, as shown in

Fig. 2 [11], The geometry and coordinate system are illustrated

in Fig. 3. It is assumed that only the TEII mode, p = 1, can

propagate in the waveguide, so that

0.2930< a/h <0.3827 (17)

where a is the waveguide radius. Consider the case of two strips

and a four-term expansion, i.e.,

M=2 ~l=—c r~=c S1=4 S2 =8.
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Fig. 3. Multistrip current representation.
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the post surface as matching lines, Symmetry shows that only

Zc= I
four lines (denoted 1,2, 3, and 4 in Fig. 3) need to be tested.

The @l(x) and @z(x) of (22) are used as the weighting functions

for each matching line. From (20) we have

o 1 0
T

~,=ot(x)
T

Fig. 2. A pair of posts in circular waveguide and their equivalent
Therefore (1 1)–(13) become

circuit.
1
~ ~Lp,le-vP~zz =—l]

In view of the fact that both the posts and incident electric field
P

are x-directed, the equivalent currents can be expressed as

4

~=i ~ Z,f(x’, y’) onul, z~=—c (18a)
j+

~ =i i Zjf,(x’, y’) onuz, z~=c (18b)
j=5

where

f(x, Y)=4,(x)J,(Y) (19)

$1=$3=+5=$7 *2= +4= +6= +8 (20)

[I=!f2=~5=[6 [3=[4=[7=[8 (21)

#l(x) = sin ku (22a)

Oz(x)=a(l –cosku)–sinku (22b)

kh – sin kh cos kh
~=

(1-coskh)’

u=x–a+h

MY)=; (23a)

(23b)

with h the post length and b the strip width. The constant a

makes *I and *2 orthogonal to one another in the interval

0< u < h [7]. The strips ml and Uz must be within the post of

diameter d; hence

O<c<d/2 (24)

0< b<(d2–4c2)l’2. (25)

It is convenient to select six generatrix lines equally spaced on

[=2, i=l,2,. ..,8.

z;l~H(y)@L(x)@pl( X,yt)~~ (W

L
P>]

= 2/: f12~H(y’)epx(x’, y’)fi(X’, y’) du’ dy’ (27)

V= e-’p’zJH(y’)@z(~)e,.(xjyL)du (28)
o

where

iY(y)=h- a+(a2-y2)1’2 (29)

is the length of matching line or strip in the x direction, and

PI= VI/j is the propagation constant of the dominant mode
TEII. In the structure considered, only the modes with cos n~

variations in ePP can be excited and epX in (26)–(28), for the

TEnQ mode, is expressed by

+J’P%E7-] ’30)
where

[

p jk
K;q= –—

e up

‘/( )I-Lq A
2

vP=k —— –1.
2r a
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For the TM~a mode,

/( )/-Lnq A
2

vp=k —— –1.
2Tr a

Here .ln(x) is the Bessel function, and ~~q and p’~q are the qth

roots of .lR(x) = O and .T~(x) = clJ~(.x)/ & = 0, respectively. In

the summation (26), only the TE~q and TMna modes with odd

index n are needed because the x = O plane is an electric wall.

The reflection and transmission coefficients for the incident

TEII mode or the scattering-matrix parameters for the equiva-

lent circuit are then obtained as

Sll = S22 = b;

s12=s21=l+b;

where bf can be derived from (15), in which the observation

points were taken to be far away from the posts, i.e., z << rl = – c

or z >> Tz = c. This is true even though the reference plane T of

the equivalent circuit in Fig. 2 is taken as the central plane of

z = O (Fig. 3). It then follows that

(32)

The parameters of the equivalent circuit can be obtained by [5]

2s~~
jXa =

(1–s,1)2-s:2

1+ Sll – S12

jxb=1– Sll + S12

(33a)

(33b)

A computer program has been prepared to carry out the

solution procedure. A 32-point Gaussian quadrature is used to

evaluate the integral over the interval O < u < II(y), which is

divided into lJx segments:

Nx=l+Int(0.7~q) +ht(~).

Similarly, a three-point Gaussian quadrature is used for the

integral over the interval – b/2 < y’ < b/2 with Ny segments:

()Ny=l+Int n! .
a

In order to test the convergence of the multistrip MM proce-

dure, the summation (26) over different higher order modes is

computed for typical dimensional parameters (0.02 < d/A <

0.1, h/a < 0.5) in the frequency band of (17). It is found that

TEnl, TEn2, TM~l, TM~2, and TMn3 make a significant contri-

bution to z,]. The contribution of TMnq with q >3 is found to

be small, and TE~q with q >2 can be ignored. The equivalent

circuit parameters are insensitive to the width, b, and location,

c, of strips except for the values close to the limits of (24) and

B/Y;
1,50

[

— f=l .063f, test [u]
––- f=o.937f, test[lzl

o f=l .063f. MM result

H
x f= O.937~ MM result j

cr/lo=o.355 I
1.00 d/A~O.053 I

c/d= O.260
I

b/d= O.433
I

I

0.50

..,:J_!?dzl_,
0.05 q.lo 0.15 0.20

Fig. 4. Equivalent susceptance of posts.

(25). The calculated values of normalized Xa and Xb for

a/A = 0.321 and 0.355 were illustrated in [111.

A comparison between numerical results and measured data

given by Ishida etal. [12] for the post normalized stisceptance

B( = – l/Xa) is :shown in Fig. 4.

IV. CONCLUSION

The multistrip moment method procedure for the analysis of

a metal obstacle in a waveguide is formulated by introducing

equivalent planar currents within the obstacle and matching

lines on the obstacle surface. In this procedure, the matrix

elements are determined by a series involving integrals of mode

functions over tlhe strips and the convergence has been inn-

proved. As an example, the technique is applied to a pair of

posts in a circular waveguide. The computed results show gocld

agreement with the experimental data.
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Numerical Analysis of Waveguide Discontinuity

Problems Using the Network Model

Decomposition Method

Geyi Wen

Abstract —This paper presents an application of the network model

decomposition method to the analysis of arbitrarily shaped H- and
E-plane waveguide junctions. By using the polygon discretization tech-

nique introduced in [11, the waveguide discontinuity region, which is
surrounded by a metallic wall and the reference planes chosen, is first
discretize~ then the topological model and the corresponding network
model for the waveguide discontinuity are established. In the formula-

tion, equivalent current sources connected to the nodes on the boundaw
of the region have been introduced to replace the effect of the field
external to the region. The field internal to the region is approximated
by the nodal voltage distribution of the network model, which cau then
be used to determine the scattering parameters of the waveguide junc-
tion. A diakoptic algorithm for the solution of the network model has
also been developed. To illustrate the applications and show the validity

of the method, numerical results for various H- and E-plane jnnctions

have been giveu and a favorable comparison has been made with other

existing theories.

I. INTRODUCTION

In an earlier p’aper, a method termed network model decom-

position (NMD) was presented for the solution of transmission

line problems. The object of the present paper is to describe the

application of the NMD method to the analysis of scattering by

II- or E-plane waveguide junctions. A topological model for the

waveguide discontinuity ~is first established by dividing the dis-

continuity region into polygonal subregions; the corresponding

network model is then formulated on the basis of the topological

model and the field equations. In the formulation, the field

internal to the waveguide discontinuity region is discretized and

represented by a nodal voltage distribution. The field external to

the region is replaced by equivalent current sources connected

to the boundary nodes, without affecting the field distribution

inside the region. A diakoptic algorithm is also developed for

the solution of the network models, by means of which the

computational efforts and computer core storage can be greatly

reduced,

To show the validity and usefulness of the network model

decomposition method, computed results are given for various

H- and E-plane waveguide discontinuities. In all cases studied,

the power conservation condition is satisfied to an accuracy of

+10-5.
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II. TOPOLOGICAL MODELS AND NETWORK MODELS

An arbitrarily sltaped n-port waveguide junction is shown in

Fig. l(a), where the reference planes rp (p= 1,2, ~. . . n) and the

metallic wall rO completely enclose the waveguide discontinuity

region 0; dp is the width, aP, or the height, bp, of the wave-

guide p for the H- or E-plane junction. The waveguide p is

assumed to be filled with dielectric of relative permittivity e,..

If the excitation by the dominant TE ~0 mode is assumed, then

the waveguide discontinuity can be described by the following

equations [9]:

Vz(p+ I/%)=o (1)

{

Er (for H-plane junction)
;, =

E, - (~/KOa)2 (for E-plane junction)
(4)

( (for H-plane junction)
~= ‘z

IIz (for E-plane junction)
(5)

where E= and H: are the z components of electric and mag-

netic field respectwely.

Following the procedure described in [1], the waveguide dis-

continuity region is first discretized by using polygon discretiza-

tion techniques (Fig. l(b)). Then the topological model for the

waveguide discontinuity problem can be established (Fig. l(c)).

The set of all the oriented branches and the incidehce matrix of

the topological model will be denoted by Sb = {bl, bz, ” “ “, bb}

and xl = {a,,} respectively. Then we have the equivalent form of

Kirchhoff’s voltage laws as follows:

Ub = A:V (6)

where ~=(ql,qz,~ 0., qN)~ is the node-to-datum voltage vector;

~k is the value Of 9 at node ‘k (~= LZ” ~”3 N); and ‘b is the

branch voltage vector.

Making use of the approximation introduced in [1], the node

equation for an interior node nk can be expressed in terms of

the incidence matrix A as

(7)
~=1 1=1

where Ul, is the branch voltage, ib[ the branch current and Yk,

the branch admittances:

{

Yko = – K~sk

— —)/=”‘k, =(&l% ‘%P,

(8)

We now construct the node equation for a boundary node.

The dual element Gk of a boundary node nk is shown in [1,

fig, 2(b)]. The following relation can then be derived in a similar

way:
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